Journal of Statistical Physics, Vol. 93, Nos. 1/2, 1998

On the Perturbation Expansion of the KPZ Equation
Kay Jorg Wiese'

Received June 25, 1998

We present a simple argument to show that the f-function of the d-dimensional
KPZ equation (d>2) is to all orders in perturbation theory given by

Blgr)=(d—2) gr—[2/(8m)"?) I'2—d/2} g%

Neither the dynamical exponent z nor the roughness exponent { have any
correction in any order of perturbation theory. This shows that standard pertur-
bation theory cannot attain the strong-coupling regime and in addition breaks
down at d =4. We also calculate a class of correlation functions exactly.
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1. INTRODUCTION

During the last years, there has been an increasing interest in out of equi-
librium dynamics. Among these, a lot of research was devoted to non-linear
growth, and in particular to the Kardar-Parisi-Zhang equation”

ah(axl, n_, V2h(x, 1) +% (Vh(x, D)) +n(x, 1) (L1)
1 0, 1) =2D 6%x = x') 8¢~ 1) (1.2)

Thanks to a fluctuation dissipation theorem and the mapping to exactly
solvable models, much is known for space-dimension d = 1.""® In contrast,
the case of d> 2 can only be attacked by approximative methods or field-
theoretic perturbative expansions. Using the latter, the fixed point structure
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of the renormalization group flow for d =2 +¢ has been obtained.(::* %
Two domains can be distinguished: For small effective coupling
24D

g=—73 (1.3)

the renormalization group flow goes to 0 in the long-wavelength limit. For
large coupling the flow is expected to tend to a strong coupling fixed point
g= g, The crossover takes place at g= g, which turns out to be of
order ¢ in an g-expansion and can therefore be studied perturbatively.

In this article we present a simple argument to resum the perturbation
expansion and to calculate the renormalization group functions to all
orders. This topic has first been adressed in ref. 6, but is difficult to access
there by a non-specialist. The author of the present publication was there-
fore encouraged to find a simple derivation, which sets the results on a
clear footing and allows to study the limits of the method. Emphasis is laid
upon a pedagogical presentation, understandable with an elementary back-
ground in renormalization theory. We will therefore perform all steps of the
renormalization program by using elementary tools only. This includes a
proof of perturbative renormalizability, which in standard field theories is
a formidable task, see, e.g., ref. 7 and references therein.

Let us also mention that similar conclusions have independently been
obtained by H. K. Janssen,® and in a different context and with com-
pletely different methods in refs. 9 and 10.

2. SUMMATION OF THE KPZ EQUATION TO ALL ORDERS IN
PERTURBATION THEORY

First of all, we want to eliminate the nonlinear term in Eq. (1.1). Using
the well-known Cole Hopf transformation

W(x, 1) 1= W2 Hx0 (2.1)

and absorbing a factor of v into ¢ leads to the following equations in terms
of W(x, t):

0 A
EP Wix, t)=AW(x,t)+2—v§i7(x, ty Wix, t) (2.2)
n(x, t)yn(x', )=2vD 64 (x—x')d(t—1') (2.3)

In interpreting Eqgs. (1.1) and (2.2) in Itd-discretization, we have explicitly
subtracted a drift term ~ W(x, f). Thus the expectaton value of W(x, ¢) will
be constant.
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We are now in a position to write down the generating functional for
the dynamic expectation values

J@[ W] @[ W] 9[,7] P L W, ) +§ j(x, 1) Wix, 1) +J(x, 1) W(x, 1) (2.4)

with
JLW, W, 5] =j {W(x, t)<W(x, 1y—AW(x, 1)
4 Wi L. 25
_Eﬁﬂ(-x’ t) (Xs t)>+4—D_V’7 (X’ t)} ( . )

Expectation values are obtained from Eq. (2.4) through variation with
respect to j(x, t) and j(x, ¢). The interpretation of the functional (2.5) is
simple: The term proportional to W{x, ) is just the equation of motion
(2.2), thus integrating over all purely imaginary fields forces the equation
of motion to be satisfied. The last term in Eq. (2.5) is the noise distribution.
Note that the path integral runs over positive values of W(x, ) only, since
W(x, t) = /2 hlx0),
The noise-integration can be done. We obtain a simplified action

J[ W, W]:j VT/(x,r)(W(x,z)—AW(x,t))—‘i;(ﬁ/(x,z)W(x,t))2 (2.6)

x, ¢

where
_ 242D

v3

(2.7)

As a side remark, let us note that another way to obtain Eq. (2.6) is to
write down the generating functional for the original KPZ equation (1.1)
and then to perform a change of coordinates®

W(X, l) = e()./2v) h(x, 1)

~ ~ (2.8)
W(x, t):=h(x, t) e” ¥ hx0
This transformation leaves the integration measure invariant.
Equation (2.2) only makes sense when specifying the initial conditions,
ie, W(x,t) at time ¢t=0. The simplest choice W(x,0)=0 leads to
0, W(x,0)=0 and consequently to W(x, t) =0. We therefore start with

Wi(x,0)=1 (2.9)
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which is equivalent to a flat initial condition for A(x, t), namely &(x, 0) = 0.
In order to eliminate the constant part of Eq. (2.9) from perturbation
theory, we set

Wix, t)=1+w(x, 1) (2.10)

The response-function of the non-interacting theory (“free response-func-
tion™) is

R(ix—x',t—1t)y={w(x, t) W(x', ')y
=0(t— [ dn(t—1)] "W e~ x—xVB1=)  (21])

All other free expectation values vanish

Cwlx, 1) w(0,0)50=0

. . (2.12)
{Wx, 1) W(0,0)50=0

Let us now adress the problem of restricting the path-integral to values
of W(x, 1) > 0. Starting with W(x, ¢) > 0, the time evolution in Eq. (2.2) will
keep Wi(x, t)>0 for all ¢. This is easily verified for vanishing noise, there-
fore the free response-function (2.11) is correct. We shall see below that
also perturbation theory respects this property.

Perturbation theory is developed by starting from the functional (2.6).
The non-linear term is

LW(x, 1) W(x, ) =3 W2x, 1)+ WHx, 1) wlx, £) + S(W(x, 1) w(x, 1))?

(2.13)
and we denote
%L t W x, 1) = 4.
P win = < (2.14)
%L,,(W(x’ Dwlx, 0)2= Dk

Since <. and —%. by its own can not build up divergent diagrams, we
neglect them for the moment and start by analysing the perturbative
expansion of an observable O with ¢ only

(0> ={0ef Ky, (2.15)
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The basic ingredient is the exponential of the interaction
8 X (2.16)

from which we have to build vertices in perturbation theory. First of all,
there is no vacuum-correction, as self-contractions of X vanish identi-
cally due to causality. This also holds for the contraction of more than one
vertex. With the same argument, we conclude, that no diagram with two
external legs can be constructed. Therefore, there is no divergent contribu-
tion to both WW= Ww and WAW = WAw at any order in perturbation-
theory, therefore v (hidden in ¢) has not to be renormalized.? The only
possible diagrams are chains of ~x7 , of the form x>, > x> and
so on or higher order vertices. The latter are irrelevant in perturbation
theory.”
We therefore write

e =g DU+ DU
8 XX 8" XXX+

+ higher order vertices (2.17)

where the time-argument of the vertices grows from left to right. Note that
the combinatorial factor of 1/n! which comes from the expansion of the
exponential function at order g” has canceled against the n! possibilities to
order the vertices in time. In addition, any bubble appears with a com-
binatorial factor of 2, which cancels against factors of 1/2 from the vertex,
Eq. (2.13). So any of the chain diagrams in (2.16) still contains a factor
of 1/2.

To proceed further, we first suppress the “higher order vertices” in
Eq. (2.17), as the only divergencies they may contain are sub-chains as
those depicted in Eq. (2.17), that will be treated here.

Second, we can switch to Fourier-representation, thus regard the
diagrams in Eq. (2.17) as a function of the external momentum p and fre-
quency  instead of the coordinates x and ¢, and finally integrate over p
and w instead of x and 1. Then, each chain in Eq. (2.17) factorizes, i.e., can

2 Note that this is not in contradiction with the non-trivial value for = obtained in dimension
d =1: there, as well as for d =2, the non-trivial fixed point describing the rough phase is in
the strong coupling regime, i.e., not acceccible by a systematic perturbation expansion; this
means that the expansion parameter is always large and the expansion uncontrolled.
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be written as product of the vertex >:::N~ times a power of the elementary
loop diagram (which is a function of p and w)

L RO = (D, ) D (218)
— _— 7

n loops

Equation (2.17) is a geometric sum, equivalent to

{
l+g—m—7 (2.19)
1—-g {::l)p,w X

and one reads off the effective 4-point function

1
Lot lp0=8 ———
’ l-gi«:>p,w

As we shall show below, the loop integral in Eq. (2.20) is divergent for any
p and w when d — 2. Renormalisation means to absorb this divergence into
a reparametrization of the coupling constant g: We claim that there is a
function a = a(d), such that the 4-point function is finite (renormalized) as
a function of g, instead of g, when setting

(2.20)

g=Z 81" (2.21)
with

1
—1+agR

e=d—2 (2.22)

g
4 is an arbitrary scale, the so-called renormalization scale. As a function
of gp, the 4-point function reads

€

Lo pw= L
T M a—p D, ) 8k

To complete the proof, we have to calculate the elementary diagram,

(2.23)

w/24+v,p/2 +k

N {i> _pe, (2.24)

wf2—v,pl2—k



On the Perturbation Expansion of the KPZ Equation 149

This is

d¢ 1
| il f ; — (2.25)
(2n)¢ J 2 (p/2 + k)Y + z( 24+ v) (p/2 k)Y +i{w/2—v)
To perform the integration over v, the integration path can be closed either
in the upper or lower half-plane. Closing it in the upper half-plane, we
obtain:

f d% 1
(2m)? (k+p/2)? + (k —p/2)* +iw

© d% 2 -
_ — (22 +1/2 p? + i)
jo ds‘[(2 )de

1
(87()‘1/2[ ds 5= 42 —5(/2 P + i)
L[, o\ d
:W<§ p2+zw> F<1 —§> (2.26)

The 4-point function in Eq. (2.23) therefore depends on p and w, and more
specifically on the combination 1p?+iw. We now chose a subtraction
scale, i.e., we demand that I, 4 evaluated at u> =3 p*+iw be

rwwWW]l/2p2+iw=u2=gR (2'27)

This is achieved by setting

1 d 2 d\1
:—(Sn)d/zr(l—5>=—_—(8n)mr<2—5>g (2.28)

Moreover, since
171 df2—1
;<§p2+iw> ue (2.29)

is finite in the limit ¢ — 0 as long as the combination of 1 p? + iw is finite,
it can be read off from Eq. (2.23) then also I',,, 3w, , is finite. (If useful,
either p =0 or w =0 may safely be taken.) This completes the proof. Note
that this ensures that the model is renormalizable to all orders in perturba-
tion-theory, what is normally a formidable task to show.”
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The f-function that we shall calculate now is exact to all orders in per-
turbation theory. As usual, it is defined as the variation of the renormalized
coupling constant, keeping the bare one fixed

0
ﬁ(gR)=:u5; &r (2.30)

g

From Eq. (2.27) we see that it gives the dependence of the 4-point function
on p and w for fixed bare coupling. Solving

&

__8RM

=Tt (2.31)
for gz, we obtain
O S (232)
and hence
B(gr) =egr(1+agp) (2.33)
Using a from Eq. (2.28), our final result is
2 d
Blgx)=(d—-2) gR—WF<2~5> gk (2.34)

as stated in the abstract. It shows that standard perturbation theory fails
to produce a strong coupling fixed point, a result which cannot be over-
emphasized. This means that any treatment of the strong coupling regime
has to rely on non-perturbative methods. It does of course not rule out the
possibility to find an exactly solvable model, non-equivalent to KPZ, for
which it is possible to expand towards the strong-coupling regime of KPZ.
Note that also for d=1 this equation does not possess a fixed point
describing the rough phase; the latter is in the strong coupling regime, not
accessible by a perturbation expansion.

Let us also note that the f-function is divergent at d =4, and therefore
our perturbation expansion breaks down at d =4. To cure the problem, a
lattice regularized version of Eq. (2.2) may be used. However, then the lat-
tice cut-off @ will enter into the equations and the result is no longer model-
independent. This may be interpreted as d=4 being the upper critical
dimension of KPZ, or as sign for a simple technical problem. Compare also
ref. 11.
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3. CRITICAL EXPONENTS AND CONNECTION TO
CALCULATIONS IN THE STANDARD
REPRESENTATION OF THE
KPZ EQUATION

Quite a lot of work has been done by directly working in the KPZ
picture. A crucial point to understand is therefore the relation of the KPZ
picture and the Cole-Hopf transformed model used here. The relation is
easy on the level of the f-functions, which are the same for both models.
In the Cole-Hopf picture it is also easy to see that, as there are no correc-
tions to the response function, v and by this means the dynamical exponent
z does not acquire any perturbative correction, and thus

z=2 (3.1)

to all orders.

What is not so easy to compare are correlation functions of the height-
variable /(x, t) in the original KPZ language with objects of the Cole-Hopf
transformed theory. One has to compare, see Eq. (2.1)

Ch(x, £ (X', )y ~ In W(x, 1) In W(X', t')) (3.2)

As logarithms are difficult to handle, one can also study expectation values
of vertex-operators

(R Wn NP W 1) (3.3)

with arbitrary « and p. Expectation values of /& can be reconstructed by
using the identity

-0

.1 . © dj
In W=1lim ~[1— W] = lim j T oLer—e="]  (34)

d—=0 0 0 K
Therefore the characteristic functions contain much more information than,

e.g., the 2-point function

(W (x, 1) WX, 1)) (3.5)
Using the tilt-invariance of the KPZ model,'?) Eq. (3.1) also implies
that the roughness exponent (,, defined via (for {,<0; for {,>0 one

would use {(h(x, t) —h(x', t))?> instead)

Chlx, ) h(X, 8)> ~ |x — x| % (3.6)
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of the A-field at a non trivial fixed point is
Cn=0 (3.7)

To study correlation-functions more directly, we use the first term from Eq.
(2.14) to calculate

t

<W(X, t) W(X', l')> ::gj y’T{::—: x,

,
»r x

-

Y5

Rix—y,t—1)R(x'—y, ' —1) (3.8)

Note that this is the only diagram which contributes, since more com-
plicated diagrams involving loops like {:){::, have to be taken at zero
momentum and frequency and thus vanish according to Eq. (2.26).

Further, when ¢ and ¢ are small, the expectation value in Eq. (3.8) is
small, too. This is physical, since the surface has not much grown yet. In
the other limit of large times, ¢, 1" — oo and keeping t — ¢’ fixed, the r.h.s. of
Eq. (3.8) converges towards

gCx—x', t—1') (3.9)

where C(x, ) is the standard dynamic correlation function which in
Fourier space reads

1

o=

(3.10)

For equal times, this relation reads
W, WX, 1)) ~g [x =P =gpZy |x —x'?~¢ (3.11)
leading to a renormalization for w of the form
wr=Z;"Pw (3.12)
and to a roughness exponent {,, for the field w in

w(x, 1) WX, 1)) ~ x — x| % (3.13)
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with
Co=Co+ L,
2—d
=== 14
bo=—3 (3.14)
1 0
5Cw=§ﬂaln2g

Using Eqgs. (2.21) and (2.22), we can express fi(g) in terms of d{,(gr) as

B(gr) =grle—20(,] (3.15)

At a non-trivial fixed point g = g* >0, ie., at the roughning transistion,
this induces

6Cw(gR)=§ (3.16)

and therefore
¢w=0 (3.17)

It is tempting to indentify {, with {,. A priori, this is surprising, since 4
and w are very different observables, related by

w(x, t) =M= _q (3.18)

The putative identity {,, = {,, will therefore only hold, if w is, within correla-
tion functions, well approximated by the term linear in 4 on the r.h.s. of
Eq. (3.18). It will certainly break down when {, >0, ie. in the strong-
coupling regime. It is still possible to relate correlation-functions for 4 and
w via integral-transforms as in Eq. (3.4), as long as the expectation value
in Eq. (3.3) is dominated by contractions with s‘,':: only, leading to purely
Gaussian correlations. However, in the strong-coupling regime, also non-
linear terms, of which the first is {(w?(x, ) w(x', ")), will contribute to
Eq. (3.3), making a systematic analysis easier said than done. This is
another difficulty of the perturbation expansion beyond the roughning
transition.

On a more technical level, it is worth realizing that the above relations
can be used to simplify the perturbation expansion in the original KPZ
language.
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4. CONCLUSIONS

In this article, we have presented a simple method to resum the pertur-
bation expansion of the KPZ equation and to calculate the renormaliza-
tion group p-function to all orders in perturbation theory, including a
proof of perturbative renormalizability. The main conclusion is that there
is no anomalous contribution to the dynamical exponent z in the weak-
coupling regime and at the roughening transition. We also have given some
indications of why standard perturbation theory fails in describing the
strong-coupling regime.
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